Thymic stromal lymphopoietin production induced by skin irritation results from concomitant activation of protease-activated receptor 2 and interleukin 1 pathways


Background: Thymic stromal lymphopoietin (TSLP) mediates proallergic T helper 2-type responses by acting on leucocytes. Endogenous pathways regulating TSLP production are poorly defined. Objectives: To uncover the mechanisms by which skin barrier disruption elicits TSLP production and to delineate the level at which individual mechanistic components may converge. Methods: A combination of primary keratinocytes, skin explants and in vivo strategies was employed. Murine skin was tape stripped in the presence of neutralizing antibodies or antagonists. Cells and explants were stimulated with interleukin (IL)-1 and protease-activated receptor 2 agonist (PAR-2-Ag). TSLP levels were quantified by enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. Chromatin immunoprecipitation and promoter reporter assays were used to examine recruitment and functional activity of nuclear factor kappa B (NF-κB) at the TSLP promoter. Results: TSLP induction in mouse skin occurred in a PAR-2- and IL-1-dependent manner. This scenario was duplicated by exogenous IL-1 plus PAR-2-Ag vs. each stimulus alone. Joint activity of PAR-2 and IL-1 was also observed in human keratinocytes. The TSLP promoter was identified as the target of PAR-2/IL-1, whereby PAR-2 activation augmented the recruitment of NF-κB and transcriptional activation over IL-1 alone. Combined treatment showed activity at concentrations of IL-1 unable to elicit NF-κB activity on their own. Conclusions: Skin barrier disruption activates the IL-1 and the PAR-2 pathways, which act in concert to activate the TSLP promoter and possibly other inflammatory genes. Awareness of this combined activity may permit a more flexible clinical management by selective targeting of either pathway individually or collectively. What’s already known about this topic? Thymic stromal lymphopoietin (TSLP) is rapidly induced upon skin perturbation and mediates proallergic T helper 2-type responses by acting on leucocytes. Endogenous control of TSLP expression is poorly understood, but interleukin (IL)-1 is one regulator in the cutaneous environment In addition to IL-1, protease-activated receptor 2 (PAR-2) organizes central inflammatory pathways in the skin. What does this study add? IL-1 and PAR-2 pathways cooperate in driving TSLP production in mice and humans. Pathway integration occurs at the level of the TSLP promoter through enhanced recruitment and transcriptional activation of nuclear factor kappa B. When PAR-2 is co-stimulated, very low IL-1 levels (inactive by themselves) can induce biologically meaningful responses in the skin environment. What is the translational message? Physical skin irritation results in robust TSLP production by simultaneous activation of PAR-2 and IL-1 pathways.

British Journal of Dermatology